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Abstract

This paper formulates and examines the electro!elastic coupling e}ects resulting from the presence of a
screw dislocation inside an elliptical piezoelectric inhomogeneity embedded in an in_nite piezoelectric matrix[
The general solution to this problem is obtained by conformal mapping and Laurent series expansion of the
corresponding complex potentials[ The appropriate expressions of the _eld potentials and the _eld com!
ponents are given explicitly in both the inhomogeneity and the surrounding matrix using a perturbation
technique[ The internal energy and the force on the dislocation are computed and several speci_c examples
are provided to illustrate the validity and versatility of the developed formulations[ Þ 0887 Elsevier Science
Ltd[ All rights reserved[

0[ Introduction

Due to their favorable electro!mechanical behaviour\ piezoelectric materials have been widely
used as sensors and actuators[ These devices are designed to work under combined electro!
mechanical loads[ The presence of various defects\ such as dislocations\ cracks and inclusions\ can
greatly in~uence their characteristics and coupled behaviour under load[

Signi_cant progress has recently been made in the electro!elastic interaction caused by defects
or inhomogeneities in piezoelectric materials[ The works of McMeeking "0876#\ Pak "0889\ 0881#\
Wang "0881#\ Suo et al[ "0881#\ Chen "0882#\ Fan and Qin "0884#\ Zhang and Tong "0885#\ Sosa
and Khutoryansky "0885#\ Zhong and Meguid "0886#\ Deng and Meguid "0886#\ Meguid and
Deng "0886#\ among others\ provide some recent contributions to the subject[ Several basic results
have been obtained\ e[g[\ Deeg "0879# examined the e}ect of a dislocation\ a crack and an inclusion
upon the coupled response of piezoelectric solids[ Pak "0889# derived closed!form solutions for a
screw dislocation in an in_nite piezoelectric solid\ and showed the in~uence of the dislocation on
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the electro!elastic coupling behaviour[ Using the general eight!dimensional formalism\ Suo et al[
"0881# discussed the problem of interfacial cracks in bonded anisotropic piezoelectric media and
obtained the solutions in terms of four analytical potential functions[ More recently\ Fan and Qin
"0884# analyzed a piezoelectric ellipsoidal inhomogeneity embedded in a non!piezoelectric elastic
matrix using the equivalent inclusion method[ Zhang and Tong "0885# formulated the mechanical
and electric _elds around an elliptic cylindrical cavity in a piezoelectric material under remote
antiplane shear and inplane electric _elds by means of complex variable method[ Meguid and
Deng "0886# obtained the solution for the interaction problem of a dislocation outside an elliptical
piezoelectric inhomogeneity in an in_nite piezoelectric matrix[ They found that when the inhomo!
geneity reduces to a cavity the electric _eld strength\ both in the cavity and in the surrounding
matrix\ is not a}ected by the dislocation and is uniform inside the cavity[

It is the purpose of this paper to extend our previous work "Meguid and Deng\ 0886# to
investigate the electro!elastic coupling behaviour induced by a screw dislocation inside an elliptical
piezoelectric inhomogeneity embedded in an unbounded piezoelectric matrix[ The matrix is sub!
jected to a remote antiplane shear and inplane electric _eld[ The analysis is based upon the use of
conformal mapping and the perturbation method[ Following the introduction\ Section 1 provides
the basic _eld equations and the interfacial continuity conditions between the inhomogeneity and
the matrix[ In Section 2\ a general series solution for the problem of a dislocation inside an elliptical
inhomogeneity is derived explicitly[ In Section 3\ the total internal energy and the interaction energy
between the dislocation and the inhomogeneity are considered and the force on the dislocation is
computed[ In Section 4\ several examples are provided to illustrate the applications of the developed
expression[ The appropriate expressions for the _eld variables and _eld potentials\ both in the
inhomogeneity and in the matrix\ are obtained for the following cases ] "i# a circular piezoelectric
inhomogeneity in a piezoelectric matrix ^ "ii# an elliptical elastic dielectric inhomogeneity in an
elastic dielectric matrix ^ and "iii# an elliptical piezoelectric inhomogeneity in an elastic matrix[
Finally\ the paper is concluded in Section 5[

1[ Basic equations

Let us consider an in_nite piezoelectric medium containing an elliptical piezoelectric inhomo!
geneity and an isolated singularity\ subject to the uniform remote mechanical and electric loads
shown in Fig[ 0[ Both the inhomogeneity and the matrix are assumed to be transversely isotropic\
while the singularity and the inhomogeneity are in_nitely extended in a direction perpendicular to
the xÐy!plane[ The inhomogeneity is assumed to be perfectly bonded with the matrix along the
interface L and there are no concentrated forces and free charges lying on L[ The singularity may
be a line dislocation\ a line force or a line charge[ In our study\ the singularity will be considered
as a screw dislocation located at point "x9\ y9# inside the inhomogeneity with the Burgers vector
given as bz[ The regions occupied by the matrix and the inhomogeneity are referred to as V0 and
V1\ respectively[

For the present problem\ only the anti!plane displacement w and the in!plane electric _eld Ex

and Ey exist[ They are independent of the longitudinal coordinate z\ such that w � w"x\ y#\
Ex � Ex"x\ y# and Ey � Ey"x\ y#[ The respective governing _eld equations and the constitutive
relations can be expressed as
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Fig[ 0[ A schematic of the electro!elastic interaction between a screw dislocation and an elliptical inhomogeneity in a
piezoelectric material[
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1w
1y
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where szx and szy are the shear stresses\ Dx and Dy are the electric displacements\ and c33\ e04 and
o00 are the longitudinal shear modulus\ piezoelectric modulus and dielectric modulus\ respectively[
Substituting "2# and "3# into "0# and "1# and noting that Ei � −f\i\ where f"x\ y# is the electric
potential\ we have

c3391w¦e0491f � 9

e0491w−o0091f � 9 "4#

where 91 is the two!dimensional Laplacian operator[ Let w and f be the real parts of the analytic
functions C"z# and F"z#\ such that ]
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w �
0

1c33

ðC"z#¦C"z#Ł

f �
0

1o00

ðF"z#¦F"z#Ł "5#

where z � x¦iy is the complex variable and the overbar refers to the complex conjugate[ The
expressions given in "5# satisfy "4# automatically[ The electric _eld strength\ the electric dis!
placements and the stresses can be expressed by C"z# and F"z# as follows ]

Ex−iEy � −
0

o00

F?"z#\ Dx−iDy �
e04

c33

C?"z#−F?"z#\

szx−iszy � C?"z#¦
e04

o00

F?"z# "6#

where prime denotes the derivatives with respect to the arguments[ Using "6#\ the resultant force
T and the resultant normal components S of the electric displacement along any arc AB can be
calculated as

T � g
B

A

"szx dy−szy dx# �
i
1 6ðC"z#−C"z#ŁBA¦

e04

o00

ðF"z#−F"z#ŁBA7
S � g

B

A

"Dx dy−Dy dx# �
i
1 6

e04

c33

ðC"z#−C"z#ŁBA−ðF"z#−F"z#ŁBA7 "7#

where ð ŁBA represents the change in the bracketed function going from point A to B along the arc[
Let us now introduce the following mapping function

z � V"z# �
c
1

ðRz¦"Rz#−0Ł\ Rz �
0
c

ðz¦"z1−c1#0:1Ł "8#

with

z � j¦ih\ c �"a1−b1#0:1 � a"0−o1#0:1

R � 0
a¦b
a−b1

0:1

� 0
0¦o

0−o1
0:1

\ o �
b
a

"09#

where 1a and 1b are the major and minor diameters of the elliptical inhomogeneity[ This mapping
function transforms region V0 of the z!plane into the exterior region of the unit circle G0 "r � 0#
in the transformed z!plane[ It also transforms region V1 into the annular region between the unit
circle G0 and a circle G1 of radius r � 0:R representing a cut from −c to ¦c in the z!plane\
see Fig[ 1[ With the mapping function "8#\ eqns "5# and "7# can be rewritten in the z!plane as
follows ]
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Fig[ 1[ A schematic of conformal mapping used[
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f �
0

1o00

ðF"z#¦F"z#Ł "00#
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S �

i
1 6

e04

c33

ðC"z#−C"z#ŁBA−ðF"z#−F"z#ŁBA7 "01#

where C"z# and F"z# imply CðV"z#Ł and FðV"z#Ł\ respectively[ By extending the perturbation
technique adopted by Stagni "0871# for isotropic elasticity\ the general expressions for w and f in
"00# for the inhomogeneity can now be written as

w0 �
0

1c0
33

ðC9"z#¦C9"z#¦C0"z#¦C0"z#Ł
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1o0
00

ðF9"z#¦F9"z#¦F0"z#¦F0"z#Ł

J

f

F

j

z $ V0 "02#
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w1 �
0

1c1
33

ðC�"z#¦C�"z#¦C1"z#¦C1"z#Ł

f1 �
0

1o1
00

ðF�"z#¦F�"z#¦F1"z#¦F1"z#Ł

J

f

F

j

z $ V1 "03#

where the subscripts "or superscripts# 0 and 1 represent the matrix V0 and the inhomogeneity V1\
respectively[ The functions C9 and F9 "C� and F�# are the _eld potentials which are holomorphic
in V0"V1#\ except at some singular points such as those located at dislocations and concentrated
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forces or charges[ The functions C0 and F0 "or C1 and F1# are the _eld potentials which are
holomorphic in region V0 "or V1#[

The assumption of perfect bonding and that of no free charges and forces along the interface
between regions V0 and V1 imply the continuity of displacement\ electric potential\ traction and
normal components of the electric displacement across the elliptical interface[ These conditions
can be expressed as

w0 � w1\ f0 � f1\ T0 � T1\ S0 � S1 on G0"z � s � eiq#[ "04#

Substituting "02# and "03# into "04# yields

m0 ðC9"s#¦C9"s#¦C0"s#¦C0"s#Ł � C�"s#¦C�"s#¦C1"s#¦C1"s# "05a#

m1 ðF9"s#¦F9"s#¦F0"s#¦F0"s#Ł � F1"s#¦F1"s# "05b#

ðC9"s#−C9"s#¦C0"s#−C0"s#Ł¦a0 ðF9"s#−F9"s#¦F0"s#−F0"s#Ł

� ðC�"s#−C�"s#¦C1"s#−C1"s#Ł¦a1 ðF1"s#−F1"s#Ł "05c#

b0 ðC9"s#−C9"s#¦C0"s#−C0"s#Ł−ðF9"s#−F9"s#¦F0"s#−F0"s#Ł

� b1 ðC�"s#−C�"s#¦C1"s#−C1"s#Ł−ðF1"s#−F1"s#Ł "05d#

where

m0 � c1
33:c

0
33\ m1 � o1

00:o
0
00\ a0 � e0

04:o
0
00\ a1 � e1

04:o
1
00

b0 � e0
04:c

0
33\ b1 � e1

04:c
1
33[ "06#

In addition\ the following conditions must be satis_ed on G1

C1"s:R# � C1"s¹ :R#\ F1"s:R# � F1"s¹ :R# "07#

since the points s:R and s¹ :R correspond to the same points of the cut from −c to ¦c in the z!
plane[

Our task now is to determine the complex potentials Cj and Fj " j � 0\ 1# for regions V0 and V1

which satisfy conditions "05# and "07#[

2[ General solutions

When a dislocation is located at the point z � z9 � V"z9# inside the inhomogeneity\ care should
be taken in choosing C9 and F9 "C� and F�# since they are multi!valued in V0"V1#[ After considering
the singularity and multi!valued behaviour caused by the dislocation\ an appropriate choice of the
_eld potentials C9\ F9\ C� and F� are made as follows

C9"z# � h0 ln z¦p9V"z#

F9"z# � h1 ln z¦q9V"z#7 z $ V0 "08#
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C�"z# �
c1

33bz

1pi
ln ðV"z#−V"z9#Ł

F�"z# � 9 9 z $ V1 "19#

where the Burgers vector bz is a real number\ h0 and h1 are unknown complex constants which will
be determined from the interface continuity conditions[ p9 and q9 are complex constants which can
be determined from the mechanical and electric loading conditions at in_nity and can thus be
taken as the remote equivalent mechanical and electric _elds\ respectively[ There are four possible
combinations of remote mechanical and electric loadings ]

Case 0 ] remote mechanical strains g�
zx\ g�

zy and remote electric _eld strength E�
x and E�

y ^
Case 1 ] remote mechanical stresses s�

zx\ s�
zy and remote electric displacements D�

x and D�
y ^

Case 2 ] remote mechanical strains g�
zx\ g�

zy and remote electric displacements D�
x and D�

y ^ and
Case 3 ] remote mechanical stresses s�

zx\ s�
zy and remote electric _eld strength E�

x and E�
y [

Each case corresponds to a pair of p9 and q9\ which are provided in Appendix 0[
With the aid of the mapping function "8# and the following relation

ln"0−z# � − s
�

k�0

zk¦0

k¦0
=z= ³ 0 "10#

eqns "08# and "19# can be expressed by Laurent|s expansions\ as follows ]
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k¦0¦b9
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−"k¦0#Ł

F9"z# � h1 ln z¦ s
�

k�9

ðc9
kz
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kz

−"k¦0#Ł

J

f

F

j

z $ V0 "11#

C�"z# �
c1

33bz

1pi
ln z¦ s

�

k�9

b�kz
−"k¦0#

F�"z# � 9 9 0
R

¾ =z9 = ³ =z= ¾ 0 "12#

where the constant terms denoting the equipotential _eld and the translation of a rigid body have
been omitted[ The coe.cients a9

k \ b9
k \ c9

k \ d9
k and b�k are given as follows ]

a9
k � 6

p9cR:1 k � 9

9 k � 0\ 1\ [ [ [
"13a#

b9
k � 6

p9c:1R k � 9

9 k � 0\ 1\ [ [ [
"13b#

c9
k � 6

q9cR:1 k � 9

9 k � 0\ 1\ [ [ [
"13c#
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d9
k � 6

q9c:1R k � 9

9 k � 0\ 1\ [ [ [
"13d#

b�k �
c1

33bz

1pi 0−
0

k¦01 ðzk¦0
9 ¦"R1z9#−"k¦0#Ł k � 9\ 0\ 1\ [ [ [ [ "13e#

Noting that in the z!plane\ C0"z# and F0"z# are holomorphic in the exterior of the unit circle G0

and C1"z# and F1"z# are holomorphic in the annular region between the unit circle G0 and the circle
G1 of radius r � 0:R "Fig[ 1#\ they can be expressed by the following Laurent|s expansions ]

C0"z# � s
�

k�9

b0
kz

−"k¦0#\ F0"z# � s
�

k�9

d0
kz

−"k¦0# z $ V0 "14#

C1"z# � s
�

k�9

ða1
kz

k¦0¦b1
kz

−"k¦0#Ł

F1"z# � s
�

k�9

ðc1
kz

k¦0¦d1
kz

−"k¦0#Ł

J

f

F

j

z $ V1[ "15#

Substituting "15# into "07# yields

a1
k � R1"k¦0#b1

k \ c1
k � R1"k¦0#d1

k [ "16#

With relation "16#\ equation "15# reduces to

C1"z# � s
�

k�9

ða1
kz

k¦0¦a1
kR

−1"k¦0#z−"k¦0#Ł

F1"z# � s
�

k�9

ðc1
kz

k¦0¦c1
kR

−1"k¦0#z−"k¦0#Ł

J

f

F

j

z $ V1[ "17#

Substituting expressions "11#\ "12#\ "14# and "17# into the continuity condition "05#\ and noting
that on the unit circle G0 of Fig[ 1\ z � s � 0:s¹ \ we have

m0b
0
k � −m0"a¹9

k¦b9
k #¦b�k¦a¹1

k¦a1
kR

−1"k¦0# "18a#

m1d
0
k � −m1"c¹9

k¦d9
k #¦c¹1

k¦c1
kR

−1"k¦0# "18b#

b0
k¦a0d

0
k �"a¹9

k−b9
k¦b�k#¦a0"c¹9

k−d9
k #¦"a1

k¦a1c
1
k #R−1"k¦0#−"a¹1

k¦a1c¹
1
k # "18c#

b0b
0
k−d0

k � b0"a¹9
k−b9

k #−"c¹9
k−d9

k #¦b1b�k¦"b1a
1
k−c1

k #R−1"k¦0#−"b1a¹
1
k−c¹1

k # "18d#

and

h0 �
c0

33bz

1pi
\ h1 � 9[ "29#

For a given k "k � 9\ 0\ 1\ [ [ [#\ eqns "18a#Ð"18d# provide a system of four linear equations with
four unknowns a1

k \ b0
k \ c1

k and d0
k [ These unknown coe.cients can be solved and expressed in terms

of the speci_ed coe.cients a9
k \ b9

k \ c9
k \ d9

k and b�k as being ]
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a1
k � I "0#

k a9
k¦J "0#

k a¹9
k¦L"0#

k c9
k¦N "0#

k c¹9
k¦U "0#

k b�k¦V "0#
k b¹�k "20a#

b0
k � I "1#

k a9
k¦J "1#

k a¹9
k¦L"1#

k c9
k¦N "1#

k c¹9
k¦U "1#

k b�k¦V "1#
k b¹�k−b9

k "20b#

c1
k � I "2#

k a9
k¦J "2#

k a¹9
k¦L"2#

k c9
k¦N "2#

k c¹9
k¦U "2#

k b�k¦V "2#
k b¹�k "20c#

d0
k � I "3#

k a9
k¦J "3#

k a¹9
k¦L"3#

k c9
k¦N "3#

k c¹9
k¦U "3#

k b�k¦V "3#
k b¹�k−d9

k "20d#

where the coe.cients I "n#
k \ J "n#

k \ L"n#
k \ N "n#

k \ U "n#
k and V "n#

k "n � 0\ 1\ 2\ 3# are provided in Appendix 1[
Substituting "13# into "20#\ all the coe.cients in the series expansions "14# and "17# for C0"z#\

F0"z#\ C1"z# and F1"z# are determined[ Furthermore\ with the help of the following relation

dj

1z
�

1Rz1

c"R1z1−0#
"21#

the electric _eld strength\ electric displacements and the stresses can be calculated from "6#\ as

Ex0−iEy0 � −
0

o0
00 $q9−

1Rz1

c"R1z1−0#
s
�

k�9

"k¦0#d0
kz

−"k¦1#% "22a#

Dx0−iDy0 �
e0

04

c0
33 6p9¦

1Rz1

c"R1z1−0# $
c0

33bz

1pi
0
z
− s

�

k�9

"k¦0#b0
kz

−"k¦1#%7
−$q9−

1Rz1

c"R1z1−0#
s
�

k�9

"k¦0#d0
kz

−"k¦1#% "22b#

szx0−iszy0 � p9¦
1Rz1

c"R1z1−0# $
c0

33bz

1pi
0
z
− s

�

k�9

"k¦0#b0
kz

−"k¦1#%
¦

e0
04

o0
00$q9−

1Rz1

c"R1z1−0#
s
�

k�9

"k¦0#d0
kz

−"k¦1#% "22c#

in the matrix\ and

Ex1−iEy1 � −
0

o1
00

1Rz1

c"R1z1−0#
s
�

k�9

"k¦0#c1
k ðzk−R−1"k¦0#z−"k¦1#Ł "23a#

Dx1−iDy1 �
e1

04

c1
33 6

c1
33bz

1pi
0

z−z9

¦
1Rz1

c"R1z1−0#
s
�

k�9

"k¦0#a1
k ðzk−R−1"k¦0#z−"k¦1#Ł7

−
1Rz1

c"R1z1−0#
s
�

k�9

"k¦0#c1
k ðzk−R−1"k¦0#z−"k¦1#Ł "23b#
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szx1−iszy1 �
c1

33bz

1pi
0

z−z9

¦
1Rz1

c"R1z1−0#
s
�

k�9

"k¦0#a1
k ðzk−R−1"k¦0#z−"k¦1#Ł

¦
ee

04

o1
00

1Rz1

c"R1z1−0#
s
�

k�9

"k¦0#c1
k ðzk−R−1"k¦0#z−"k¦1#Ł "23c#

in the inhomogeneity[ The problem is thus solved[ It should be pointed out that the current
problem can be divided into two independent problems ] one is a dislocation inside a piezoelectric
inhomogeneity in an in_nite matrix without the remote loading ^ the other is a piezoelectric
inhomogeneity embedded in a piezoelectric matrix under remote antiplane shear and inplane
electric _eld[ These two problems are uncoupled due to the linearity of the governing _eld equations
and constitutive relations "0#Ð"3#[ They can be discussed separately and superposed to result in the
_eld components as given in "22# and "23#[

The _eld potentials for the later problem can then be given in closed forms in the physical z!
plane as ]

C9"z#¦C0"z# � p9z¦
0
1
ð"I "1#

9 R1−0#p9¦J "1#
9 R1p¹9

¦L"1#
9 R1q9¦N "1#

9 R1q¹9Ł ðz−"z1−c1#0:1Ł z $ V0 "24a#

F9"z#¦F0"z# � q9z¦
0
1
ðI "3#

9 R1p9¦J "3#
9 R1p¹9

¦"L"3#
9 R1−0#q9¦N "3#

9 R1q¹9Ł ðz−"z1−c1#0:1Ł z $ V0 "24b#

C�"z#¦C1"z# � ðI "0#
9 p9¦J "0#

9 p¹9¦L"0#
9 q9¦N "0#

9 q¹9Łz z $ V1 "25a#

F�"z#¦F1"z# � ðI "2#
9 p9¦J "2#

9 p¹9¦L"2#
9 q9¦N "2#

9 q¹9Łz z $ V1[ "25b#

Substitution of the above solutions into "6# produces the _eld components[ It can be easily
found that the stress\ the electric _eld strength and the electric displacement inside the elliptical
inhomogeneity are uniform\ since C1"z# and F1"z# are linear functions of z[ The solutions "24# and
"25# are in agreement with those derived by Zhong and Meguid "0885#[

3[ Integral energy and force on the dislocation

One of the major interests in discussing dislocation problems is the interaction energy and force
on dislocations[ In the present problem\ the total internal energy W due to a dislocation located
at a point z9\ in the absence of the remote mechanical and electric _elds\ is equal to the work
required to produce the dislocation\ i[e[\

W � 0
1
bzT

where T is the resultant force along the dislocation line running through regions 0 and 1[ It follows
from "7# or "01# that
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T �
i
1

"ðC9"z#¦C0"z#−C9"z#−C0"z#Ł¦a0 ðF9"z#¦F0"z#−F9"z#−F0"z#Ł#z:z½$L
z:L

¦
i
1

"ðC�"z#¦C1"z#−C�"z#−C1"z#Ł¦a1 ðF�"z#¦F1"z#−F�"z#−F1"z#Ł#z:z9¦d
z:z½$L "26#

where L is a large constant\ d is a small number representing the dislocation core radius[
Substituting "08#\ "19#\ "14#\ "15# and "29# into "26# and noting that the value of the terms in

"26# cancel each other at the point z � z½ on the interface L\ we obtain the following expression for
the total internal energy

W �
0
1

bz Im 6
c1

33bz

1pi
ln d−

c0
33bz

1pi
ln L¦const7¦dW "27#

where Im stands for the imaginary part of the complex expressions given above[ dW is the electro!
elastic interaction energy between the dislocation and the piezoelectric inhomogeneity\ which can
be obtained by excluding the dislocation singularity as

dW �
0
1

bz Im 6 s
�

k�9

"a1
k¦a1c

1
k #ðzk¦0

9 ¦R−1"k¦0#z−"k¦0#
9 Ł7 "28#

where z9 is related to z9 �"c:1#ðRz9¦"0:Rz9#Ł[ For a dislocation lying at the point z9 � x9 on the
x!axis in the inhomogeneity\ the interaction energy becomes

dW �
c1

33b
1
z

3p 6 s
�

k�9

0
k¦0

ðU "0#
k −V "0#

k ¦a1"U "2#
k −V "2#

k #Łðzk¦0
9 ¦R−1"k¦0#z−"k¦0#

9 Ł17[ "39#

The force F on the dislocation at the point x9 is de_ned as the negative gradient with respect to x9

of the interaction energy dW\ i[e[\

F � −
1"dW#
1x9

which leads to

F � −
c1

33b
1
z

1p
s
�

k�9 6
1Rz9 ðU "0#

k −V "0#
k ¦a1"U "2#

k −V "2#
k #Ł

c"R1z1
9−0#

ðz1"k¦0#
9 −"R1z9#−1"k¦0#Ł7[ "30#

The above expression includes the electro!mechanical coupling e}ects[

4[ Examples

In some special cases\ the series solutions "14# and "17# for the general electro!elastic coupling
problem between a screw dislocation and an elliptical piezoelectric inhomogeneity can be reduced
to simpler closed!form expressions[ In this section\ several special examples are provided to
illustrate the versatility of the general solutions[ Three combinations of the inhomogeneity and the
matrix will be considered[ They are ] "i# a circular piezoelectric inhomogeneity in a piezoelectric
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matrix ^ "ii# an elliptical elastic dielectric inhomogeneity in an elastic dielectric matrix ^ and "iii# an
elliptical piezoelectric inhomogeneity in an elastic matrix[

4[0[ Circular piezoelectric inhomo`eneity in piezoelectric matrix

When a screw dislocation is located inside a circular piezoelectric inhomogeneity "a � b#\ the
mapping function "8# becomes z � V"z# � az[ Using relations "10# and "20#\ the _eld potentials
C0\ F0\ C1 and F1 in "14# and "17# can be obtained in closed forms and the solutions in V0 and V1

are given by

C9"z#¦C0"z# �
c0

33bz

1pi
ln

z
a

¦
c1

33bz

1pi
D09 ln 00−

z9

z 1¦p9z¦"p¹9D2¦q¹9D3#
a1

z
z $ V0 "31a#

F9"z#¦F0"z# �
c1

33bz

1pi
D00 ln 00−

z9

z 1¦q9z¦"p¹9D6¦q¹9D7#
a1

z
z $ V0 "31b#

C�"z#¦C1"z# �
c1

33bz

1pi $ln"z−z9#¦D2 ln 00−
z¹9z

a1 1%¦"p9D0¦q9D1#z z $ V1 "32a#

F�"z#¦F1"z# � −
c1

33bz

1pi
D8 ln 00−

z¹9z

a1 1¦"p9D4¦q9D5#z z $ V1 "32b#

where

D0 �
1c1

33

c0
33

ðc0
33"o0

00¦o1
00#¦e0

04"e0
04¦e1

04#Ł
D

\ D1 �
1c1

33

o0
00

"e0
04o

1
00−o0

00e
1
04#

D
\

D2 �
0
D

ð"c0
33−c1

33#"o0
00¦o1

00#¦"e0
04#1−"e1

04#1Ł\ D3 �
1c0

33

o0
00

"e0
04o

1
00−o0

00e
1
04#

D
\

D4 �
1o1

00

c0
33

"c0
33e

1
04−e0

04c
1
33#

D
\ D5 �

1o1
00

o0
00

ðo0
00"c0

33¦c1
33#¦e0

04"e0
04¦e1

04#Ł
D

\

D6 �
1o0

00

c0
33

"c0
33e

1
04−e0

04c
1
33#

D
\ D7 �

0
D

ð"c0
33¦c1

33#"o0
00−o1

00#¦"e0
04#1−"e1

04#1Ł\

D8 � −
1o1

00

c1
33

"c0
33e

1
04−e0

04c
1
33#

D
\ D09 �

1c0
33

c1
33

ðc1
33"o0

00¦o1
00#¦e1

04"e0
04¦e1

04#Ł
D

\

D00 � −
1o0

00

c1
33

"c0
33e

1
04−e0

04c
1
33#

D
\

with
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D �"c0
33¦c1

33#"o0
00¦o1

00#¦e0
04¦e1

04#1[

It follows from "6#\ "31# and "32# that

Ex0−iEy0 � −
0

o0
00 $q9−"D6p¹9¦D7q¹9#

a1

z1
¦

c1
33bz

1pi
D00 0

0
z−z9

−
0
z1% "33a#

Dx0−iDy0 � 0
e0

04

c0
33

p9−q91¦
e0

04bz

1pi
0
z
¦

c1
33bz

1pi 0
e0

04

c0
33

D09−D001 0
0

z−z9

−
0
z1

−$
e0

04

c0
33

"D2p¹9¦D3q¹#−"D6p¹9¦D7q¹9#%
a1

z1
"33b#

szx0−iszy0 � 0p9¦
e0

04

o0
00

q91¦
c0

33bz

1pi
0
z
¦

c1
33bz

1pi 0D09¦
e0

04

o0
00

D001 0
0

z−z9

−
0
z1

−$"D2p¹9¦D3q¹9#¦
e0

04

o0
00

"D6p¹9¦D7q¹9#%
a1

z1
"33c#

in the matrix\ and

Ex1−iEy1 � −
0

o1
00 $"D3p9¦D5q9#−

c1
33bz

1pi
D8

z−a1:z¹9% "34a#

Dx1−iDy1 �
e1

04

c1
33

"D0p9¦D1q9#−"D4p9¦D5q9#¦
e1

04bz

1pi
1

z−z9

¦
c1

33bz

1pi 0
e1

04

c1
33

D2¦D81
0

z−a1:z¹9

"34b#

szx1−iszy1 �"D0p9¦D1q9#¦
e1

04

o1
00

"D4p9¦D5q9#¦
c1

33bz

1pi
0

z−z9

¦
c1

33bz

1pi 0D2−
e1

04

o1
00

D81
0

z−a1:z¹9

"34c#

in the inhomogeneity[
Expressions "33# and "34# reveal that the existence of the dislocation will a}ect the electric _eld

strength\ electric displacements and stresses\ both inside and outside the circular inhomogeneity[
In the absence of the dislocation\ these _eld components become uniform in the inhomogeneity
and our results are identical to those obtained previously by Pak "0881#[ In the absence of the
electric _elds\ our solution coincides with those of Smith "0857# and Gong and Meguid "0883# for
the elastic inhomogeneity problem[

In the absence of p9 and q9\ the interaction energy between a dislocation lying at the point z9 � x9

in the inhomogeneity and the force on the dislocation can be calculated from "39# and "30# as
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dW �
c1

33b
1
z

3p
"a1D8−D2# ln 00−

x1
9

a11 "35#

and

F � −
1"dW#

x9

�
c1

33b
1
z

1p

"a1D8−D2#x9

a1−x1
9

\ "36#

respectively[ These results reduce to those of Dundurs "0856#\ when only the elastic _eld is
considered[

4[1[ Elliptical elastic dielectric inhomo`eneity in elastic dielectric matrix

If the screw dislocation is located inside an elliptical elastic dielectric inhomogeneity which is
embedded in an elastic dielectric matrix\ then e0

04 � e1
04 � 9[ In this case\ the expressions provided

by "20# for the coe.cients a1
k \ b0

k \ c1
k and d0

k can be given by the following simple forms

a1
k � I "0#

k a9
k¦J "0#

k a¹9
k¦U "0#

k b�k¦V "0#
k b¹�k\ c1

k � L"2#
k c9

k¦N "2#
k c¹9

k \

b0
k � I "1#

k a9
k¦J "1#

k a¹9
k¦U "1#

k b�k¦V "1#
k b¹�k−b9

k \ d0
k � L"3#

k c9
k¦N "3#

k c¹9
k−d9

k "37#

where

I "0#
k �

1m0"0¦m0#

"0¦m0#1−"0−m0#1R−3"k¦0#
\ J "0#

k � −
1m0"0−m0#R−1"k¦0#

"0¦m0#1−"0−m0#1R−3"k¦0#

U "0#
k �

"0−m0#1R−1"k¦0#

"0¦m0#1−"0−m0#1R−3"k¦0#
\ V "0#

k � −
0−m1

0

"0¦m0#1−"0−m0#1R−3"k¦0#

I "1#
k �

3m0R
−1"k¦0#

"0¦m0#1−"0−m0#1R−3"k¦0#
\ J "1#

k � −
"0−m1

0#ð0−R−3"k¦0#Ł

"0¦m0#1−"0−m0#1R−3"k¦0#

U "1#
k �

1"0¦m0#

"0¦m0#1−"0−m0#1R−3"k¦0#
\ V "1#

k � −
1"0−m0#R−1"k¦0#

"0¦m0#1−"0−m0#1R−3"k¦0#

L"2#
k �

1m1"0¦m1#

"0¦m1#1−"0−m1#1R−3"k¦0#
\ N "2#

k � −
1m1"0−m1#R−1"k¦0#

"0¦m1#1−"0−m1#1R−3"k¦0#

L"3#
k �

3m1R
−1"k¦0#

"0¦m1#1−"0−m1#1R−3"k¦0#
\ N "3#

k �
"0−m1

1#ð0−R−3"k¦0#Ł

"0¦m1#1−"0−m1#1R−3"k¦0#
[

The _eld potentials are thus obtained as follows ]

C9"z#¦C0"z# �
c0

33bz

1pi
ln z¦

c
1

p9Rz¦
c
1
"I "1#

9 p9¦J "1#
9 p¹9#

R
z

¦ s
�

k�9

"U "1#
k b�k¦V "1#

k b¹�k#z−"k¦0# z $ V0 "38a#
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F9"z#¦F0"z# �
c
1

q9Rz¦
c
1
"L"3#

9 q9¦N "3#
9 q¹9#

R
z

z $ V0 "38b#

C�"z#¦C1"z# �
c1

33bz

1pi
ln"z−z9#¦"I "0#

9 p9¦J "0#
9 p¹9#z

¦ s
�

k�9

"U "0#
k b�k¦V "0#

k b¹�k#ðzk¦0¦"R1z#−"k¦0#Ł z $ V1 "49a#

F�"z#¦F1"z# �"L"2#
9 q9¦N "2#

9 q¹9#z z $ V1 "49b#

where b�k is given by "13e#[ If the dislocation is located at point z9 � V9"z9# along the x!axis and
the remote strain g�

zy or stress s�
zy vanishes\ such that z9 � z¹9\ b�k � −b¹�k and p9 � p¹9\ then the _eld

components can be given by

Ex0−iEy0 � −
0

o0
00

ðq9z
1−"L"3#

9 q9¦N "3#
9 q¹9#Ł

R1

R1z1−0
"40a#

Dx0−iDy0 � −ðq9z
1−"L"3#

9 q9¦N "3#
9 q¹9#Ł

R1

R1z1−0
"40b#

szx0−iszy0 � 6
c0

33bz

pi
z¦p9cRz1−p9cR"I "1#

9 ¦J "1#
9 #

−1 s
�

k�9

"k¦0#b�k"U "1#
k −V "1#

k #z−k7
R

c"R1z1−0#
"40c#

in the matrix\ and

Ex1−iEy1 � −
0

o1
00

"L"2#
9 q9¦N "2#

9 q¹9# "41a#

Dx1−iDy1 � −"L"2#
9 q9¦N "2#

9 q¹9# "41b#

szx1−iszy1 �
c1

33bz

1pi
0

z−z9

¦p9"I "0#
9 ¦J "0#

9 #

¦
1Rz1

c"R1z1−0#
s
�

k�9

"k¦0#b�k
Rk

"U "0#
k −V "0#

k #ð"Rz#k−"Rz#−"k¦1#Ł "41c#

in the inhomogeneity[
In this case\ the elastic and the electric _elds are decoupled[ Accordingly\ the electric _eld

strength and the electric displacements are uniform in the inhomogeneity[
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4[2[ Elliptical piezoelectric inhomo`eneity in elastic matrix

When the matrix becomes elastic and is subjected only to remote mechanical stresses s�
zx and

s�
zy or remote mechanical strains g�

zx and g�
zy \ then e0

04 � o0
00 � 9 and q9 � 9[ Piezoelectric composite

sensors are usually made in this con_guration\ where a piezoelectric bar is embedded in an elastic
matrix[ The _eld potentials in this case are given as follows

C9"z#¦C0"z# �
c0

33bz

1pi
ln z¦

c
1

p9Rz¦
c
1
"I "1#

9 p9¦J "1#
9 p¹9#

R
z

¦ s
�

k�9

"U "1#
k b�k¦V "1#

k b¹�k#z−"k¦0# z $ V0 "42a#

F9"z#¦F0"z# � 9 z $ V0 "42b#

F�"z#¦C1"z# �
c1

33bz

1pi
ln"z−z9#¦"I "0#

9 p9¦J "0#
9 p¹9#z

¦ s
�

k�9

"U "0#
k b�k¦V "0#

k b¹�k#ðzk¦0¦"R1z#−"k¦0#Ł z $ V1 "43a#

F�"z#¦F1"z# �"I "2#
9 p9¦J "2#

9 p¹9#z¦ s
�

k�9

"U "2#
k b�k¦V "2#

k b¹�k#ðzk¦0¦"R1z#−"k¦0#Ł z $ V1 "43b#

where

I "0#
k �

1m0"0¦m0¦m0a1b1#
v

\ J "0#
k � −

1m0"0−m0−m0a1b1#R−1"k¦0#

v
^

U "0#
k �

"0−m0−m0a1b1#1R−1"k¦0#

v
\ V "0#

k � −
0−m1

0"0¦a1b1#1

v
^

I "1#
k �

3m0"0¦a1b1#R−1"k¦0#

v
\ J "1#

k �
ð0−m1

0"0¦a1b1#1Ł ð0−R−3"k¦0#Ł
v

^

U "1#
k �

1"0¦a1b1#"0¦m0¦m0a1b1#
v

\

V "1#
k � −

1"0¦a1b1#"0−m0−m0a1b1#R−1"k¦0#

v
^

I "2#
k �

1m0b1"0¦m0¦m0a1b1

v
\ J "2#

k � −
1m0b1"0−m0−m0a1b1#R−1"k¦0##

v

U "2#
k �

−3m0b1"0¦a1b1#R−1"k¦0#

ð0−R−3"k¦0#Łv
\
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V "2#
k �

−1b1"ð0−R−3"k¦0#Ł¦m0"0¦a1b1#ð0¦R−3"k¦0#Ł#
ð0−R−3"k¦0#Łv

with

v �"0¦m0¦m0a1b1#1−"0−m0−m0a1b1#1R−3"k¦0#[

The _eld components can be derived by substituting "42# and "43# into "6#[ It should be pointed
out that due to the electricÐelastic coupling\ both the electric _elds and the mechanical _elds are
in~uenced by the dislocation\ and thus are not uniform inside the inhomogeneity[

5[ Conclusions

A general treatment is provided to the electro!elastic interaction problem of a screw dislocation
inside an elliptical piezoelectric inhomogeneity in an in_nite piezoelectric matrix[ By using con!
formal mapping and the perturbation method\ explicit forms of the _eld potentials and the _eld
components are derived in both the inhomogeneity and the matrix[ The expressions for the internal
energy of a dislocation inside the inhomogeneity and the force on the dislocation are given[ Several
particular problems are provided and are used not only to verify the validity of the current results\
but also to determine the electro!mechanical coupling e}ects resulting from the presence of a point
defect[

Appendix 0 ] Expressions for complex constants p9 and q9 corresponding to different combinations

of remote electric and mechanical loads

The complex constants p9 and q9 in "08# can be determined from the following four cases of the
boundary conditions given at in_nity ]

Case 0 ] Remote mechanical strains g�
zx\ g�

zy and remote electric _eld strength E�
x and E�

y will yield

p9 � c0
33g

�
zx−ic0

33g
�
zy \ q9 � −o0

00E
�
x ¦io0

00E
�
y [ "A0[0#

Case 1 ] Remote mechanical stresses s�
zx\ s�

zy and remote electric displacements D�
x and D�

y will
yield

p9 �
s�

zx¦"e0
04:c

0
33#D�

x

0¦"e0
04#1:"o0

00c
0
33#

−i
s�

zy¦"e0
04:c

0
33#D�

y

0¦"e0
04#1:"o0

00c
0
33#

\

q9 �
"e0

04:c
0
33#s�

zx−D�
x

0¦"e0
04#1:"o0

00c
0
33#

−i
"e0

04:c
0
33#s�

zy−D�
y

0¦"e0
04#1:"o0

00c
0
33#

[ "A0[1#
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Case 2 ] Remote mechanical strains g�
zx\ g�

zy and remote electric displacements D�
x and D�

y will
yield

p9 � c0
33g

�
zx−ic0

33g
�
zy \ q9 �"e0

04g
�
zx−D�

x #−i"e0
04g

�
zy−D�

y #[ "A0[2#

Case 3 ] Remote mechanical stresses s�
zx\ s�

zy and remote electric _eld strength E�
x and E�

y will
yield

p9 �"s�
zx¦e0

04E
�
x #−i"s�

zy¦e0
04E

�
y #\ q9 � −o0

00E
�
x ¦io0

00E
�
y [ "A0[3#

Appendix 1 ] Details of coef_cients in eqns "20#

The coe.cients in eqns "20# are given as follows ]

I "0#
k � R1"k¦0# 0

l0\k

d0\k

¦
l2\k

d1\k1\ J "0#
k � R1"k¦0# 0

l0\k

d0\k

−
l2\k

d1\k1\

L"0#
k � R1"k¦0# 0

l1\k

d0\k

¦
l3\k

d1\k1\ N "0#
k � R1"k¦0# 0

l1\k

d0\k

−
l3\k

d1\k1\

U "0#
k � R1"k¦0# 0

l8\k

d0\k

−
l00\k

d1\k 1\ V "0#
k � R1"k¦0# 0

l8\k

d0\k

¦
l00\k

d1\k 1[ "A1[0#

I "2#
k � R1"k¦0# 0

l4\k

d0\k

¦
l6\k

d1\k1\ J "2#
k � R1"k¦0# 0

l4\k

d0\k

−
l6\k

d1\k1\

L"2#
k � R1"k¦0# 0

l5\k

d0\k

¦
l7\k

d1\k1\ N "2#
k � R1"k¦0# 0

l5\k

d0\k

−
l7\k

d1\k1\

U "2#
k � R1"k¦0# 0

l09\k

d0\k

−
l01\k

d1\k 1\ V "2#
k � R1"k¦0# 0

l09\k

d0\k

¦
l01\k

d1\k 1[ "A1[1#

I "1#
k �

0¦R1"k¦0#

m0

l0\k

d0\k

¦
0−R1"k¦0#

m0

l2\k

d1\k

\ J "1#
k �

0¦R1"k¦0#

m0

l0\k

d0\k

−
0−R1"k¦0#

m0

l2\k

d1\k

−0\

L"1#
k �

0¦R1"k¦0#

m0

l1\k

d0\k

¦
0−R1"k¦0#

m0

l3\k

d1\k

\ N "1#
k �

0¦R1"k¦0#

m0

l1\k

d0\k

−
0−R1"k¦0#

m0

l3\k

d1\k

\

U "1#
k �

0¦R1"k¦0#

m0

l8\k

d0\k

−
0−R1"k¦0#

m0

l00\k

d1\k

¦
0
m0

\ V "1#
k �

0¦R1"k¦0#

m0

l8\k

d0\k

¦
0−R1"k¦0#

m0

l00\k

d1\k

[

"A1[2#
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I "3#
k �

0¦R1"k¦0#

m1

l4\k

d0\k

¦
0−R1"k¦0#

m1

l6\k

d1\k

\ J "3#
k �

0¦R1"k¦0#

m1

l4\k

d0\k

−
0−R1"k¦0#

m1

l6\k

d1\k

\

L"3#
k �

0¦R1"k¦0#

m1

l5\k

d0\k

¦
0−R1"k¦0#

m1

l7\k

d1\k

\ N "3#
k �

0¦R1"k¦0#

m1

l5\k

d0\k

−
0−R1"k¦0#

m1

l7\k

d1\k

−0\

U "3#
k �

0¦R1"k¦0#

m1

l09\k

d0\k

−
0−R1"k¦0#

m1

l01\k

d1\k

\ V "3#
k �

0¦R1"k¦0#

m1

l09\k

d0\k

¦
0−R1"k¦0#

m1

l01\k

d1\k

[

"A1[3#

where

l0\k � −$0
0
m1

¦01R1"k¦0#¦0
0
m1

−01%−b0 $0
a0

m1

¦a11R1"k¦0#¦0
a0

m1

−a11% "A1[4#

l1\k �"a0−a1#"0−R1"k¦0## "A1[5#

l2\k � −$0
0
m1

¦01R1"k¦0#−0
0
m1

−01%−b0 $0
a0

m1

¦a11R1"k¦0#−0
a0

m1

−a11% "A1[6#

l3\k �"a1−a0#"0¦R1"k¦0## "A1[7#

l4\k �"b1−b0#"0−R1"k¦0## "A1[8#

l5\k � −$0
0
m0

¦01R1"k¦0#¦0
0
m0

−01%−a0 $0
b0

m0

¦b11R1"k¦0#¦0
b0

m0

−b11% "A1[09#

l6\k �"b0−b1#"0¦R1"k¦0## "A1[00#

l7\k � −$0
0
m0

¦01R1"k¦0#−0
0
m0

−01%−a0 $0
b0

m0

¦b11R1"k¦0#−0
b0

m0

−b11% "A1[01#

l8\k �
0
1 0

0
m0

−01 $0
0
m1

¦01R1"k¦0#¦0
0
m1

−01%
¦

0
1 0

b0

m0

−b11 $0
a0

m1

¦a11R1"k¦0#¦0
a0

m1

−a11% "A1[02#

l09\k �"b1−b0#R1"k¦0#:m0 "A1[03#

l00\k �
0
1 0

0
m0

−01 $0
0
m1

¦01R1"k¦0#−0
0
m1

−01%
¦

0
1 0

b0

m0

−b11 $0
a0

m1

¦a11R1"k¦0#−0
a0

m1

−a11% "A1[04#
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l01\k �"b1−b0#R1"k¦0#:m0 "A1[05#

with

d0\k � −$0
0
m0

¦01R1"k¦0#¦0
0
m0

−01% $0
0
m1

¦01R1"k¦0#¦0
0
m1

−01%
−$0

b0

m0

¦b11R1"k¦0#¦0
b0

m0

−b11% $0
a0

m1

¦a11R1"k¦0#¦0
a0

m1

−a11% "A1[06#

d1\k � −$0
0
m0

¦01R1"k¦0#−0
0
m0

−01% $0
0
m1

¦01R1"k¦0#¦0
0
m1

−01%
−$0

b0

m0

¦b11R1"k¦0#−0
b0

m0

−b11% $0
a0

m1

¦a11R1"k¦0#−0
a0

m1

−a11% "A1[07#

and m0\ m1\ a0\ a1\ b0 and b1 given in "06#[
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